Awards & Winners

Donald C. Spencer

Date of Birth 25-April-1912
Place of Birth Boulder
(Colorado, United States of America)
Nationality United States of America
Also know as Donald Spencer
Profession Mathematician
Donald Clayton Spencer was an American mathematician, known for major work on deformation theory of structures arising in differential geometry, and on several complex variables from the point of view of partial differential equations. He was born in Boulder, Colorado, and educated at the University of Colorado and MIT. He wrote a Ph.D. in diophantine approximation under J. E. Littlewood at the University of Cambridge, completed in 1939. He had positions at MIT and Stanford before his appointment in 1950 at Princeton University. There he was involved in a major series of collaborative works with Kunihiko Kodaira on the deformation of complex structures, which had a profound influence on the theory of complex manifolds and algebraic geometry, and the conception of moduli spaces. He also was led to formulate the d-bar Neumann problem, for the operator in PDE theory, to extend Hodge theory and the n-dimensional Cauchy-Riemann equations to the non-compact case. This is used to show existence theorems for holomorphic functions. He later worked on pseudogroups and their deformation theory, based on a fresh approach to overdetermined systems of PDEs. Formulated at the level of various chain complexes, this gives rise to what is now called Spencer cohomology, a subtle and difficult theory both of formal and of analytical structure. This is a kind of Koszul complex theory, taken up by numerous mathematicians during the 1960s. In particular a theory for Lie equations formulated by Malgrange emerged, giving a very broad formulation of the notion of integrability.

Awards by Donald C. Spencer

Check all the awards nominated and won by Donald C. Spencer.

1989


National Medal of Science for Mathematics and Computer Science
(For his original and insightful research that has had a profound impact on twentieth-century mathematics, and for his role as an inspiring techer to generations fo American mathematicians.)